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BEYOND SEM: GENERAL LATENT VARIABLE MODELING

Bengt O. Muthén

This article gives an overview of statistical analysis with latent variables. Us-
ing traditional structural equation modeling as a starting point, it shows how the
idea of latent variables captures a wide variety of statistical concepts, including
random e ects, missing data, sources of variation in hierarchical data, nite mix-
tures, latent classes, and clusters. These latent variable applications go beyond
the traditional latent variable useage in psychometrics with its focus on measure-
ment error and hypothetical constructs measured by multiple indicators. The
article argues for the value of integrating statistical and psychometric modeling
ideas. Di erent applications are discussed in a unifying framework that brings
together in one general model such di erent analysis types as factor models,
growth curve models, multilevel models, latent class models and discrete-time
survival models. Several possible combinations and extensions of these models
are made clear due to the unifying framework.

1. Introduction

This article gives a brief overview of statistical analysis with latent variables.
A key feature is that well-known modeling with continuous latent variables is ex-
panded by adding new developments also including categorical latent variables.
Taking traditional structural equation modeling as a starting point, the article
shows the generality of latent variables, being able to capture a wide variety of
statistical concepts, including random e ects, missing data, sources of variation
in hierarchical data, nite mixtures, latent classes, and clusters. These latent
variable applications go beyond the traditional latent variable useage in psycho-
metrics with its focus on measurement error and hypothetical constructs measured
by multiple indicators.
The article does not discuss estimation and testing but focuses on modeling

ideas and connections between di erent modeling traditions. A few key applica-
tions will be discussed brie y. Although not going into details, the presentation
is statistically-oriented. For less technical overviews and further applications of
new developments using categorical latent variables, see, e.g., Muthén (2001a, b)
and Muthén and Muthén (2000). All analyses are performed using the Mplus
program (Muthén & Muthén, 1998-2001) and Mplus input, output, and data for
these examples are available at www.statmodel.com/mplus/examples/penn.html.
One aim of the article is to inspire a better integration of psychometric mod-

eling ideas into mainstream statistics and a better use of statistical analysis ideas
in latent variable modeling. Psychometrics and statistics have for too long been
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developed too separately and both elds can bene t from input from the other.
Traditionally, psychometric models have been concerned with measurement error
and latent variable constructs measured with multiple indicators as in factor anal-
ysis. Structural equation modeling (SEM) took factor analysis one step further
by relating the constructs to each other and to covariates in a system of linear
regressions thereby purging the “structural regressions” of biasing e ects of mea-
surement error. The idea of using systems of linear regressions emanated from
supply and demand modeling in econometrics and path analysis in biology. In
this way, SEM consists of two ideas: latent variables and joint analysis of systems
of equations. It is argued here that it is the latent variable idea that is more
powerful and more generalizable. Despite its widespread use among applied re-
searchers, SEM has still not been fully accepted in mainstream statistics. Part
of this is perhaps due to poor applications claiming the establishment of causal
models and part is perhaps also due to strong reliance on latent variables that
are only indirectly de ned. The skepticism about latent variables is unfortunate
given that, as shown in this article, latent variables are widely used in statistics,
although under di erent names and di erent forms.
This article argues that by emphasizing the vehicle of latent variables, psy-

chometric modeling such as SEM can be brought into mainstream statistics. To
accomplish this, it is necessary to clearly show how many statistical analyses
implicitly utilize the idea of latent variables in the form of random e ects, compo-
nents of variation, missing data, mixture components, and clusters. To this aim,
a general model is discussed which integrates psychometric latent variable models
with latent variable models presented in the statistical literature. The generality
of the model is achieved by considering not only continuous latent variables but
also categorical latent variables. This makes it possible to unify and to extend a
wide variety of common types of analyses, including SEM, growth curve modeling,
multilevel modeling, missing data modeling, nite mixture modeling, latent class
modeling, and survival modeling. The general model is shown schematically in
Figure 1. The general framework (D) is represented by the square, while special
cases (A, B, C) to be discussed in the article are shown in ellipses. The gen-
eral framework is drawn from Muthén and Muthén (1998-2001; Appendix 8) as
implemented in the Mplus computer program (www.statmodel.com). It should
be noted that Figure 1 is a simpli cation. For example, the general framework
includes direct e ects from c to u, from c to y, and allows c to also in uence
regression and variance parameters in the u and y parts of the model. It is hoped
that the use of a single modeling and software framework makes latent variable
modeling more accessible to both statisticians and substantive researchers. Statis-
ticians can more easily see connections between latent variable uses that they are
accustomed to and psychometric uses. Substantive researchers can more easily
focus on the research problem at hand rather than learning a multitude of model
speci cation systems and software languages.
The article is structured as follows. Section 2 discusses framework A of the
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Figure 1: A general latent variable modeling framework

general model. This framework corresponds to the more well-known case of con-
tinuous latent variables. Sub-sections discuss the modeling of measurement error
and measurement invariance in conventional SEM, random e ects in growth mod-
eling, and variance components in multilevel modeling. Section 3 discusses frame-
work B introducing categorical latent variables, including latent class analysis and
latent class growth analysis. A latent class analysis example is presented where
individuals are classi ed based on their antisocial behavior. Section 4 discusses
framework C, including latent pro le models and models that combine continuous
and categorical latent variables such as growth mixture models. A growth mix-
ture example is presented where children are classi ed into a problematic class
based on their reading development in Kindergarten and second grade. Section
5 discusses the general framework D, presenting new types of models, including
modeling with missing data on a categorical latent variable in randomized trials.
Section 6 concludes.

2. Modeling Framework A: Continuous Latent Variables

Consider the special case A of the general modeling framework shown in Figure
1. Framework A is characterized by using continuous latent variables, denoted by
the vector �, shown as a circle in ellipse A in Figure 1. Here, latent variables are
used to represent constructs that have fundamental substantive importance but
are only measured indirectly through multiple indicators that capture di erent
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aspects of the constructs.
As a rst step, a general SEM formulation of framework A is presented, fol-

lowed by the key analysis areas of random e ects modeling and variance compo-
nent modeling.1)

The measurement part of the model is de ned in terms of the p-dimensional
continuous outcome vector y,

yi = " + �i +K xi + ²i, (1)

where � is an m-dimensional vector of latent variables, x is a q-dimensional vector
of covariates, ² is a p-dimensional vector of residuals or measurement errors which
are uncorrelated with other variables, " is a p-dimensional parameter vector of
measurement intercepts, is a p×m parameter matrix of measurement slopes or
factor loadings, and K is a p× q parameter matrix of regression slopes. Usually,
only a few of the elements of K have nonzero elements, where a non-zero row
corresponds to a y variable that is directly in uenced by one or more x variables.
The covariance matrix of ² is denoted . The structural part of the model
is de ned in terms of the latent variables regressed on each other and the q-
dimensional vector x of independent variables,

�i = 
+B �i + xi + 
i. (2)

Here, 
 is an m-dimensional parameter vector, B is an m×m parameter matrix
of slopes for regressions of latent variables on other latent variables. B has zero
diagonal elements and it is assumed that I B is non-singular. Furthermore,
is an m × q slope parameter matrix for regressions of the latent variables on

the independent variables, and 
 is an m-dimensional vector of residuals. The
covariance matrix of 
 is denoted . In line with regression analysis, the marginal
distribution of x is not modelled but is left unrestricted. This leads to the mean
and covariance structures conditional on x,

" + (I B) 1 
+ (I B) 1 x+K x, (3)

(I B) 1 (I B)0 1 0 + . (4)

With the customary normality assumption of y given x, the parameters of the
model are estimated by tting (3) and (4) to the corresponding sample quantities.
This is the same as tting the mean vector and covariance matrix for the vector
(y,x)0 to the sample means, variances, and covariances for (y,x)0 (Jöreskog &
Goldberger, 1975). Here, the maximum-likelihood estimates of μx and xx are
the corresponding sample quantities.

1)Mplus examples of framework A models are given at
www.statmodel.com/mplus/examples/continuous.html.
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Joint analysis of independent samples from multiple groups is also possible,
assuming di erent degrees of parameter invariance across groups. In particular,
full or partial invariance of the measurement parameters of " and is of interest
in order to study group di erences with respect to 
 and .
From an application point of view, the modeling in (1), (2) is useful for purging

regression relationships of detrimental e ects of measurement error when multiple
indicators of a construct are available. Measurement errors among the predictors
are well-known to have particularly serious e ects, but the modeling is also useful
in examining a factor model where the measurement errors are among the outcome
(indicator) variables as when using a factor analysis with covariates (“MIMIC”
modeling). In this special case, B = 0 in (2). A baseline MIMIC analysis assumes
K = 0 in (1) and a su cient number of restrictions on and to make the model
identi ed (in an exploratory analysis, this amounts to using m2 restrictions in line
with exploratory factor analysis). The covariates strengthen the factor analysis in
two ways (cf. Muthén, 1989). First, by making the test of dimensionality stronger
by using associations not only among the y variables but also between y and x.
Second, by making it possible to examine the extent of measurement invariance
across groups de ned by di erent values on x. Measurement non-invariance across
groups de ned by xk (e.g. xki = 0/1 for individual i) with respect to an outcome
yj is captured by �jk 6= 0, re ecting a group-varying intercept, "j + �jk xk.
The model of (1) - (4) is typically estimated by maximum-likelihood (ML) un-

der the assumption of multivariate normality. Browne and Arminger (1995) give
an excellent summary of modeling and estimation issues for this model. This is
the analysis framework used for the last 20 years by conventional SEM computer
programs such as AMOS, EQS, and LISREL. More recently, ML estimation as-
suming missing at random (MAR) in the sense of Little and Rubin (1987) has
been introduced in SEM software.
Browne and Arminger (1995) also discuss the case where some or all of the

y outcomes are categorical. The case of categorical outcomes has been further
treated in Muthén (1984, 1989) with an emphasis on weighted least-squares es-
timation, including a new approach presented in Muthén, DuToit, Spisic (1997).
Mplus includes modeling with both continuous and categorical outcomes y.2)

Drawing on Muthén (1996) and Muthén and Christo erson (1981), Mplus pro-
vides a more exible parameterization than conventional SEM software in terms of
its categorical outcome modeling for longitudinal data and multiple-group analysis
using threshold measurement parameters that allow for partial invariance across
time and group. For connections with item response theory, see, e.g., Muthén
(1988), Muthén, Kao and Burstein (1991), and Takane and DeLeeuw (1987).
For an overview of conventional SEM with continuous outcomes, see, e.g.

Bollen (1989). For examples of SEM analysis in behavioral research, see, e.g.,

2)Mplus examples are given at www.statmodel.com/mplus/examples/categorical.html.
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MacCallum and Austin (2000).

2.1 Random e ects growth modeling

The use of random e ects is another example of modeling with continuous
latent variables. In mainstream statistics, random e ects are used to capture
unobserved heterogeneity among subjects. That is, individuals di er in systematic
ways that cannot be, or at least have not been, measured. Unlike the case of
psychometric latent variable contexts, however, the random e ects are typically
not thought of as constructs of primary interest, and there is typically not an
attempt at directly measuring the random e ects.

2.1.1 A growth modeling example

Growth modeling is an interesting example of random e ect modeling where
the heterogeneity concerns individual di erences in trajectories. Consider an ex-
ample from reading research. The data are from a cohort-sequential reading study
of 945 children in a sample of Texas schools, following them from Kindergarten
through second grade. In Kindergarten a phonemic awareness score was mea-
sured as a reading precursor skill. In grades 1 and 2, word recognition scores were
collected. All measures were collected at four times during the school year. At
the end of grade 2, standardized reading and spelling scores were also recorded.
These data will also be used to illustrate growth mixture modeling in framework
C. Figure 2 shows observed individual trajectories on a phonemic awareness score
for Kindergarten children divided into the upper and lower decile on the grade
2 spelling score. The individual variation in the trajectories is clearly seen with
those in the lower spelling decile showing a lower initial and ending status in
Kindergarten and a lower growth rate than those in the upper spelling decile.

2.1.2 Modeling issues

A modeling example shows the latent variable connections. Let the random
variables �0, �1, and �2 represent an intercept, a linear, and a quadratic slope,
respectively. These are coe cients in the regression of the outcome on time and
the fact that they vary across individuals gives rise to the term random coe -
cients or random e ects. The random e ects capture the individual di erences in
development over time using the Laird and Ware (1982) type of model

yit = �0i + �1i (at a) + �2i (at a)2 + �t xit + ²it, (5)

�0i = 
0 + �0 xi0 + 
0i, (6)

�1i = 
1 + �1 xi0 + 
1i, (7)

�2i = 
2 + �2 xi0 + 
2i, (8)

where at is a time-related variable, a is centering constant, xt is a time-varying
covariate, and x0 is a time-invariant covariate. In multilevel terms (see, e.g., Bryk
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Figure 2: Phonemic awareness development in Kindergarten

& Raudenbush, 2002), (5) is referred to as the level 1 equation, while (6) - (8) are
referred to as level 2 equations. In mixed linear modeling (see, e.g. Jennrich &
Sluchter, 1986; Lindstrom & Bates, 1988; Goldstein, 1995), the model is expressed
in terms of yt related to at, xt, and x0, inserting (6) - (8) into (5).
It is clear that (5) - (8) can be expressed in SEM terms using (1) and (2) by let-

ting yi = (yi1, yi2, . . . , yiT )
0, �i = (�01, �1i, �2i)0, and xi = (xi1, xi2, . . . , xiT , xi0)0.

While multilevel modeling views the analysis as a two-level analysis of a univariate
outcome y, the SEM approach is a single-level analysis of the multivariate vector
y. This issue will be discussed further in Section 2.2. Furthermore, " = 0 while

 contains three free parameters. Alternatively, the equivalent parameterization
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"1 = "2 = . . . = "T with 
 = (0,
1,
2)0 may be used. Also,

=

1 a1 a (a1 a)2

1 a2 a (a2 a)2

...
...

1 aT a (at a)2

, (9)

showing that growth modeling with random e ects is a form of factor analysis with
covariates. Time-invariant covariates have e ects on the factors and time-varying
covariates have direct e ects on the outcomes. While not typically thought of as
such, the repeated measures of y1, y2, . . . , yT can be seen as multiple indicators of
the random e ects, or growth factors as they are referred to in the latent variable
literature. One may wonder why a latent variable model with such a restricted
matrix as in (9), with no free parameters, would ever be realistic. But it has

been found that this model often captures the essential features of growth. In
the latent variable framework, however, it is easy to allow deviations from the
functional growth form by estimating some of the loadings.
Multilevel and mixed linear modeling traditions consider a more general form

of (5),
yit = �0i + �1i (ait a) + �2i (ait a)2 + �i xit + ²it, (10)

where ait indicates the possibility of individually-varying times of observation
and the slope �i is yet another random e ect. These traditions treat (ait a) as
data, whereas conventional SEM software treats (at a) as parameters. This is
the only way that random slopes can be handled in conventional SEM. In (10),
�1i, �2i, and �i are random slopes for individually-varying variables a and x. As
pointed out in Raudenbush (2001) such modeling cannot be summarized in terms
of mean and covariance structures. Unlike (4), the variance of y conditional on
the a and x variables varies as a function of these variables. In principle, however,
this points to a shortcoming of conventional SEM software, not a shortcoming
of latent variable modeling. Drawing on Asparouhov and Muthén (2002), Mplus
incorporates individually-varying times of observations and random slopes for
time-varying covariates as in (10).3)

Mainstream statistics also takes an interest in what psychometricians call fac-
tor scores, i.e. estimates of �i values to be used for estimation of individual growth
curves. Both elds favor empirical Bayes estimates, referred to as the regression
method in psychometrics.
It follows that there are several advantages of placing the growth model in a

latent variable context. For example, the psychometric idea of a latent variable
construct is not utilized in the growth model of (5) - (8). Although the y out-
comes are manifestations of growth, a psychometric approach could in principle

3)These features are included in Version 2.1 to be released Spring 2002 as a free upgrade for
Version 2 users.



BEYOND SEM: GENERAL LATENT VARIABLE MODELING 89

seek speci c indicators of the growth factors, for instance measuring indicators
of growth potential at the outset of the study, an approach that does not seem
to have been pursued. A more common situation is that a researcher wants to
study growth in a latent variable construct measured with multiple indicators.
The model speci cation is as follows, for simplicity shown for a linear model with
a single latent variable construct �it.
Let yijt denote the outcome for individual i, indicator j, and timepoint t, and

let �it denote a latent variable construct,

Level-1a (measurement part):

yijt = "jt + 	jt �it + ²ijt, (11)

Level-1b : �it = �0i + �1i at + 
it, (12)

Level-2a : �0i = 
0 + �0 xi + 
0i, (13)

Level-2b : �1i = 
1 + �1 xi + 
1i. (14)

In line with the second parameterization given above for a single outcome,
measurement invariance is speci ed by using time-invariant indicator intercepts
and slopes:

"j1 = "j2 = . . . = "jT = "j , (15)

	j1 = 	j2 = . . . = 	jT = 	j , (16)

setting the metric of the latent variable construct by 	1 = 1. The intercept of the
level-2a equation is xed at zero, 
0 = 0. V (²ijt) and V (
it) may vary over time.
Structural di erences are captured by letting E(�it) and V (�it) vary over time.
With more than one population, across-population measurement invariance would
be imposed and 
0 xed to zero only in the rst population. Multiple-indicator
growth modeling has the advantage that changes in measurements can be made
over time, assuming measurement invariance for a subset of indicators that are
maintained between adjacent time points.
Other advantages of growth modeling in a latent variable framework includes

the ease with which to carry out analysis of multiple processes, both parallel in
time and sequential, as well as multiple groups. Growth factors may be regressed
on each other using the B matrix in (2), for example studying growth while
controlling for not only observed covariates but also initial status. More generally,
the growth model may be only a part of a larger model, including for instance a
factor analysis measurement part for covariates measured with errors, or including
a mediational path analysis part for variable in uencing the growth factors, or
including a set of variable that are in uenced by the growth process.
For examples of growth modeling in a latent variable framework, see, e.g.,

Muthén and Khoo (1998) and Muthén and Curran (1997). The recent Collins and
Sayer (2001) book gives applied contributions from several di erent traditions.
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2.2 Components of variation in hierarchical data

Latent continuous variables are frequently used in statistical modeling of hi-
erarchical data. Here, latent variables are used to correctly re ect the sampling
procedure with latent variables representing sources of variation at di erent levels
of the hierarchy.
It is instructive to consider a simple ANOVA model because it clearly shows re-

lationships between factor analysis, growth modeling, and more general multilevel
latent variable models.
Consider the nested, random-e ects ANOVA,

yij = " + �i + ²ij ; i = 1, 2, . . . , n ; j = 1, 2, . . . , J. (17)

Here, i is the mode of variation for which an independent sample is obtained,
while j is clustered within i. Typical examples are individuals observed within
households and students observed within classrooms. The di erent sources of
variation are captured by the latent variables � and ². If instead j = 1, 2, . . . ,ni ,
there is missing data on some of the J measures.
Consider the covariance and variances for j = k and j = l,

cov(yik, yil) = v(�), (18)

v(yik) = v(yil) = v(�) + v(²), (19)

resulting in the intraclass correlation

'(yik, yil) = v(�)/[v(�) + v(²)]. (20)

The intraclass correlation is frequently considered in the context of cluster sam-
pling. The intraclass correlation increases for increasing between-cluster variation
v(�) relative to total variation. Or, using equivalent homogeneity reasoning, the
intraclass correlation increases when the within-cluster variation v(²) is small.
In cluster samples, the intraclass correlation is used to describe the lack of in-
dependence among observations and used when computing design e ects. The
simple model of (17) summarizes some key latent variable modeling issues in a
nutshell, showing that factor analysis, growth modeling, and multilevel modeling
are variations on the same theme.
It is clear that (17) can be seen as a special case of factor analysis in the

SEM framework of (1), (2) with a single factor and 	 = (1, 1, . . . , 1)0. Instead
of thinking of the J units within each cluster as individuals as in (17), the J y
variables are now multiple indicators measured on the same individual. Carrying
this idea back to (17), this means that the individuals within a cluster can be seen
as indicators measuring cluster characteristics.
When yj are repeated measures over time, j = t, (17) represents a growth

model with random intercepts. The repeated measures take the role of multiple
indicators measuring the random intercept growth factor. For example, the model
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may represent blood pressure measurements on individuals where in a short time
span there is no increasing or decreasing trend. The focus is on the construct of
“long-term blood pressure level”, e.g. for predicting later health outcomes. The
² residuals represent measurement error as well as time-speci c variation, both of
which may be irrelevant for the prediction.
It was noted earlier that growth modeling in the SEM framework leads to

single-level analysis because a multivariate analysis of y is carried out. The non-
independence among repeated measures within an individual indicated by the
intraclass correlations is modeled by the growth factors in uencing the outcome
at di erent time points. This is analogous to factor analysis. The same multi-
variate analysis approach may be used for more general multilevel modeling with
latent variables, for example multilevel factor analysis and multilevel growth mod-
eling, referred to as 3-level modeling in the multilevel literature. The multivariate
approach is suitable for situations where there are relatively few cluster members,
such as with analysis of spouses, siblings, or analysis of twins in behavioral genet-
ics. For a recent application to growth modeling of alcohol use among siblings,
see Khoo and Muthén (2000). The multivariate approach provides very exible
modeling where the relationships among units within a cluster can be modeled.
In Khoo and Muthén (2000) the growth factors of a younger sibling are regressed
on those of an older sibling. The cluster units can also have di erent regressions
on covariates. Di erent numbers of cluster units for di erent clusters can be han-
dled via missing data, although di erent models may be relevant for clusters of
di erent size (i.e. two-sibling homes may have a di erent dynamics than homes
with many siblings). With more than a couple of cluster units, however, the
multivariate approach becomes computationally cumbersome. For instance with
10 measures per student with 15 students per classrooms, a multivariate vector
of length 150 would have to be analyzed. As an alternative, multilevel modeling
makes a simplifying assumption of cluster units being statistically equivalent as
shown below.
Assume c = 1, 2, ..., C independently observed clusters with i = 1, 2, ..., nc indi-

vidual observations within cluster c. Let z and y represent group- and individual-
level variables. Arrange the data vector for which independent observations are
obtained as

dc
0 = (zc0, yc1

0, yc2
0, ..., ycnc

0),

where we note that the length of dc varies across clusters. The mean vector and
covariance matrix are

μdc
0 = [μz

0,1nc
0 μy

0] (21)

dc =

"
zz symmetric

1nc yz Inc W + 1nc1
0
nc B

#
. (22)

The covariance matrix dc shows that the usual i.i.d assumption of simple random
sampling is modi ed to allow for non-independent observations within clusters and
that this non-independence is modeled by the B matrix in line with the nested
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ANOVA model of (17). In (21) and (22) the sizes of the arrays are determined by
the product nc × p where p is the number of observed variables. McDonald and
Goldstein (1989) pointed out that a great reduction in size is obtainable, reducing
the ML expression

CX
c=1

{ln | dc | + (dc μdc)
0

dc
1 (dc μdc)}

to
DX
d

Cd {ln | dd | + tr[ dd
1 (SBd + nd (v̄d μ)(v̄d μ)0)]}

+(n C) { ln | W | + tr[ 1
W SPW ]}.

where d sums over clusters with distinct cluster sizes (for details, see Muthén,
1990).
Muthén (1989, 1990, 1994) showed how SEM software can be used for analyzing

models of this type. This is referred to as 2-level modeling in a latent variable
framework. Here, μ, W and B are structured in terms of SEM parameter
arrays based on (1) and (2). The analysis can be carried out using the Mplus
program.
In multilevel terms, this type of model may be viewed as a random intercept

model in line with (17) because of the additivity = W + B. As mentioned
earlier, the inclusion of random slopes leads to models that cannot be summarized
in terms of mean and covariance structures as done above (Raudenbush, 2001).
Nevertheless, random slopes can be incorporated into 2-level latent variable mod-
eling (see Asparouhov & Muthén, 2002).
3-level modeling is also included in the framework of (21) and (22) when one

of the levels can be handled by a multivariate representation, as in the case of
growth modeling in line with Section 2.1. Latent variable growth modeling in
cluster samples is discussed in Muthén (1997).
For examples, see, e.g., Muthén (1991) with an application of multilevel factor

analysis and Muthén (1989) with an application to SEM. Further examples are
given in Hecht (2001) and Kaplan and Elliott (1997).

3. Modeling Framework B

Consider next the special case B of the general modeling framework shown
in Figure 1. Framework B is characterized by using categorical latent variables,
denoted by the circle c in Figure 1 (the circle denoted �u will be discussed later
on). The choice of using a categorical latent variable instead of a continuous
latent variable is more fundamental than the corresponding choice of proper scale
type for observed outcomes. The addition of categorical latent variables to the
general framework in Figure 1 opens up a whole new set of modeling capabilities.
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In mainstream statistics, this type of modeling is referred to as nite mixture
modeling. In the current article, the terms latent class and mixture modeling will
be used interchangeably. As with continuous latent variables, categorical latent
variables are used for a variety of reasons as will now be shown.
As a rst step, a general modeling representation of framework B as used

in Mplus (Muthén & Muthén, 1998-2001) is presented. This is followed by a
discussion of four special cases: latent class analysis, latent class analysis with
covariates, latent class growth analysis, latent transition analysis, and logistic re-
gression mixture analysis. Methodological contributions to these areas have been
made in separate elds often without su cient connections and without su cient
connections to modeling in other frameworks. For example, until recently, model-
ing developments for continuous latent variables in framework A and categorical
latent variables in framework B have been kept almost completely separate.4)

Let c denote a latent categorical variable withK classes, ci = (ci1, ci2, . . . , ciK)0,
where cik = 1 if individual i belongs to class k and zero otherwise. Framework
B has two parts: c related to x and u related to c and x. c is related to x by
multinomial logistic regression using the K 1-dimensional parameter vector of
logit intercepts 
c and the (K 1)× q parameter matrix of logit slopes c, where
for k = 1, 2, . . . ,K

P (cik = 1|xi) = e ck +� 0ck
xiPK

j=1 e
cj +� 0cj

xi
, (23)

where the last class is a reference class with coe cients standardized to zero,

cK = 0, �ck = 0.
For u, conditional independence is assumed given ci and xi,

P (ui1, ui2, . . . , uir|ci,xi) = P (ui1|ci,xi) P (ui2|ci,xi) . . . P (uir|ci,xi). (24)

The categorical variable uij(j = 1, 2, . . . , r) with Sj ordered categories follows
an ordered polytomous logistic regression (proportional odds model), where for
categories s = 0, 1, 2, . . . , Sj 1 and +j,k,0 = , +j,k,Sj = ,

uij = s, if +j,k,s < uij +j,k,s+1, (25)

P (uij = s|ci,xi) = Fs+1(uij) Fs(uij), (26)

Fs(u ) =
1

1 + e ( s u ) , (27)

where for ui = (ui1, ui2, . . . , uir)
0, �ui = (�u1i , �u2i , . . . , �ufi)

0, and conditional on
class k,

ui = uk �ui +Kuk xi, (28)

�ui = 
uk + uk xi, (29)

4)Mplus examples of framework B models are given at
www.statmodel.com/mplus/examples/mixture.html.
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where uk is an r × f logit parameter matrix varying across the K classes, Kuk
is an r × q logit parameter matrix varying across the K classes, 
uk is an f × 1
vector logit parameter vector varying across theK classes, and uk is an f×q logit
parameter matrix varying across the K classes. The thresholds may be stacked
in the

Pr
j=1(Sj 1)× 1 vectors + k varying across the K classes.

It should be noted that (28) does not include intercept terms given the presence
of + parameters. Furthermore, + parameters have opposite signs than u in (28)
because of their interpretation as thresholds or cutpoints that a latent continuous
response variable u exceeds or falls below (see also Agresti, 1990, pp. 322-324).
For example, with a binary u scored 0/1 (26) leads to

P (u = 1|c,x) = 1 1

1 + e ( u ) . (30)

(31)

For example, the higher the + the higher u needs to be to exceed it, and the
lower the probability of u = 1.
Mixture modeling can involve numerical and statistical problems. Mixture

modeling is known to sometimes generate a likelihood function with several local
maxima. The occurrence of this depends on the model and the data. It is therefore
recommended that for a given dataset and a given model di erent optimizations
are carried out using di erent sets of starting values.
The numerical and statistical performance of mixture modeling bene ts from

con rmatory analysis. The same kind of con rmatory analysis as in regular mod-
eling is possible, using a priori restrictions on the parameters. With mixture mod-
eling, however, there is also a second type of con rmatory analysis. A researcher
may want to incorporate the hypothesis that certain individuals are known to
represent certain latent classes. Individuals with known class membership are
referred to as training data (see also McLachlan & Basford, 1988; Hosmer, 1973).
Multiple-group modeling corresponds to the case of all sample units contributing
training data so that c is in e ect an observed categorical variable.
In Mplus, the training data can consists of 0 and 1 class membership values for

all individuals, where 1 denotes which classes an individual may belong to. Known
class membership for an individual corresponds to having training data value of
1 for the known class and 0 for all other classes. Unknown class membership for
an individual is speci ed by the value 1 for all classes. With class membership
training data, the class probabilities are renormed for each individual to add to
one over the admissible set of classes. Fractional training data is also allowed,
corresponding to class probabilities adding to unity for each individual. With
fractional training data, the class probabilities are taken to be xed quantities,
which reduces the sampling variability accounted for in the standard error cal-
culations. Fractional training data where each individual has a probability of 1
for one class and 0’s for the other classes is equivalent to training data with class
membership value 1 for only one class for each individual. Using training data
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with a value of 1 for one class and 0’s for the other classes makes it possible to
perform multinomial logistic regression with an unordered, polytomous observed
dependent variable using the Mplus model part where c is related to x.

3.1 Latent class analysis

In latent class analysis the categorical latent variable is used to represent unob-
served heterogeneity. Here, the particular aim is to nd clusters (latent classes) of
individuals who are similar. It is assumed that a su cient number of latent classes
for the categorical latent variable results in conditional independence among the
observed outcomes. This may be viewed as heterogeneity among subjects such
that the dependence among the outcomes is obtained in a spurious fashion by
mixing the heterogeneous groups. Because the latent class variable is the only
cause of dependence among the outcomes, the latent class model is similar in
spirit to factor analysis with uncorrelated residuals.
Latent class analysis typically considers categorical indicators u of the latent

class variable c, using only a subset of modeling framework B. The variables of u
are binary, ordered polytomous, or unordered polytomous. Due to the conditional
independence speci cation, the joint probability of all u’s is

P (u1, u2, . . . , ur) =
KX
k=1

P (c = k) P (u1|c = k) P (u2|c = k) . . . P (ur|c = k). (32)

The model has two types of parameters. The distribution of the categorical latent
variable is represented by P (c = k) expressed in terms of the logit parameters 
ck
in (23). The conditional u probabilities are expressed via logit parameters in line
with (31) where for a binary u logit = +k for class k, i.e. the u part of (28) is
not needed. Similar to factor analysis, the conditional u probabilities provide an
interpretation of the latent classes such that some activities represented by the
di erent u’s are more or less likely in some classes than others.
The latent class counterpart of factor scores is obtained by posterior probabil-

ities for each individual belonging to all classes as computed by Bayes’ formula

P (c = k|u1, u2, . . . , ur) =

P (c = k) P (u1|c = k) P (u2|c = k) . . . P (ur|c = k)
P (u1, u2, . . . , ur)

. (33)

For an overview of latent class analysis, see Bartholomew (1987), Goodman
(1974) and Clogg (1995). For examples, see, e.g., Muthén (2001b), Nestadt,
Hanfelt, Liang, Lamacz, Wolyniec and Pulver (1994), Rindskopf and Rindskopf
(1986), and Uebersax and Grove (1990).
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3.1.1 A latent class analysis example of antisocial behavior

The National Longitudinal Survey of Youth (NLS) collected data on antisocial
behavior among 16 - 23 year olds. The NLSY administers an instrument with 17
binary items. Maximum-likelihood estimation by Mplus was used. Preliminary
latent class analysis of the 17 items pointed to 9 items that captured 4 di er-
ent latent classes of antisocial behavior. Class 4 is a normative class (no high
probability of endorsing any item). Class 3 is a drug involvement class (pot and
drug items). Class 2 is a personal o ense class ( ght, threat items). Class 1 is a
property o ense class (shoplift, stealing less than 50, conning someone, stealing
goods, breaking into property). The pro le plot of Figure 3 shows the estimated
item probabilities for each of the 4 classes. It should be noted that the classes
are not ordered in the sense of increasing item probabilities, but involves di erent
kinds of antisocial activities.

Figure 3: Pro les of antisocial behavior

Table 1 illustrates the use of the estimated posterior probabilities for each
individual in each class. The rows correspond to individuals who have the highest
probability for that class and the entries are the average probabilities in each class.
High diagonal and low o -diagonal values are desirable for good classi cation. It
is seen that class 2 and class 3 are the hardest to distinguish between with a
relatively high average class 2 probability of 0.13 for those who have their highest
probability in class 3. Class 2 is the person o ense class ( ght, threat) and class 3
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is the drug class (pot, drug). While Figure 3 shows that the two classes have rather
di erent item probabilities on these 4 items, they are similar on the remaining 5
items. This suggests that more items are needed to more clearly distinguish these
two classes.

Table 1: Classi cation table for antisocial behavior latent class analysis

Most Likely Mean Posterior Probabilities
Class Class 1 Class 2 Class 3 Class 4

Class 1 0.854 0.074 0.072 0.000
Class 2 0.042 0.810 0.082 0.066
Class 3 0.052 0.134 0.754 0.061
Class 4 0.000 0.122 0.051 0.827

3.2 Latent class analysis with covariates

Similar to factor analysis with covariates, it is useful to include covariates
in the latent class analysis. The aim of the latent variable modeling is still to
nd homogeneous groups of individuals (latent classes), but now covariates x are
included in order to both describe the formation of the latent classes and how
they may be di erently measured by the indicators u.
The prediction of latent class membership is obtained by the multinomial re-

gression of c on x in (23). This gives information on the composition of the latent
classes. It avoids biases in the common ad hoc 3-step procedure: (1) latent class
analysis; (2) classi cation of individuals based on posterior probabilities; and (3)
logistic regression analysis relating classes to covariates.
The variables of xmay also have a direct in uence on the variables of u, beyond

the in uence mediated by c. This is accommodated by estimating elements ofKuk
in (28). For example, with a binary u, the model forms the logistic regression of
u on x for class k,

logit = +k + �
0
k x, (34)

so that the direct in uence of x is allowed to vary across classes.
It may be noted that all features of multiple-group analysis are included in the

latent class analysis with covariates, with dummy variable covariates representing
the groups. Here, + parameters are the measurement parameters. (34) shows
that conditional on class these can vary across the groups, representing for exam-
ple gender non-invariance. The multiple-group examples of Clogg and Goodman
(1985) can all be analyzed in this way.
For examples of latent class analysis with covariates, see, e.g., Bandeen-Roche,

Miglioretti, Zeger and Rathouz (1997), Formann (1992), Heijden, Dressens and
Bockenholt (1996), Muthén and Muthén (2000), and Muthén (2001b).
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3.2.1 A latent class analysis example continued

Continuing the antisocial behavior latent class analysis example above, three
covariates from the NLS are added: age, gender, and ethnicity. This example
is drawn from Muthén and Muthén (2000). These covariates are speci ed to
in uence the probability of class membership using the multinomial regression
part (23). Measurement noninvariance with respect to the three covariates can
be studied by including a direct e ect from a covariate to an item but was not
studied here. Maximum-likelihood estimation by Mplus was used. The estimates
from the multinomial regression predicting class membership can be translated
into the curves of Figure 4. The estimated item pro les remain approximately
the same as in Figure 3 and the class interpretation is therefore the same. For a
given age, gender, and ethnicity, Figure 4 shows the probability of membership
in each class (note that this is not a longitudinal study but the x axis correspond
to ages represented in this cross-sectional sample). For example, it is seen that
the normative class 4 is the most likely class for all ages among white women,
whereas this is not true for the other three groups.

Figure 4: In uence of covariates on antisocial behavior classes
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Table 2 shows the resulting classi cation table based on estimated posterior
probabilities. It is seen that the use of covariate information improves the class
2, class 3 distinction relative to Table 1.

Table 2: Classi cation table for antisocial behavior latent class analysis
with covariates

Most Likely Mean Posterior Probabilities
Class Class 1 Class 2 Class 3 Class 4

Class 1 0.859 0.065 0.076 0.000
Class 2 0.047 0.808 0.087 0.058
Class 3 0.033 0.067 0.816 0.084
Class 4 0.000 0.048 0.105 0.846

3.3 Latent class growth analysis

Latent class growth analysis again uses a categorical latent variable to repre-
sent unobserved heterogeneity, but this time in a form that connects the growth
modeling discussed in Section 2.1 and the latent class modeling just discussed.
Here, latent classes are sought that are homogeneous with respect to develop-
ment over time. The latent class growth analysis introduces the continuous latent
variable �u of Figure 1.
In latent class growth analysis the multiple indicators of the latent classes

correspond to repeated measures over time. Individuals belong to di erent latent
classes characterized by di erent types of trajectories. Assume for simplicity a
single outcome at each timepoint, ui = (ui1, ui2, . . . , uit, . . . , uiT )

0, and the simple
growth model corresponding to (28),

Level 1 : uit = �0i + �1i at, (35)

where at are xed time scores represented in u,

uk =

1 0
1 1
...

...
1 T 1

,

where T is the number of time periods. Here, �u in (28), (29) contains an intercept
and a slope growth factor with di erences across classes captured in 
uk and

uk xi of (29). The e ects of time-varying covariates can be captured in Kuk of
(28).
It may be noted that the modeling does not incorporate continuous latent

variables in the form of random e ects, but that �u is non-stochastic conditional
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on x. This implies that conditional on x there is zero within-class variation across
individuals. This limitation can be relaxed in line with the growth modeling of
Section 2.1.
With an ordered categorical outcome variable uit, let +t,k,s be the s

th threshold
in class k at timepoint t, s = 0, 1, 2, . . . , St 1, where +t,k,0 = , +t,k,St = .
Across-time and across-class measurement invariance is imposed by the threshold
speci cation

+1,1,s = +2,1,s = . . . = +T,1,s = . . . = +1,K,s = . . . = +T,K,s, (36)

for each s value. In the level-2 equation corresponding to (29), the 
 mean of
the intercept growth factor �0i is xed at zero in the rst class for identi cation
purposes. The mean of the intercept growth factor is free to be estimated in the
remaining classes.
Latent class growth analysis has been proposed by Nagin and Land (1993); see

also articles in the special issue of Land (2001). For further examples, see, e.g.,
Nagin (1999), Nagin and Tremblay (2001), and Muthén (2001b).

3.4 Latent transition analysis

Latent transition analysis is a form of latent class analysis where the multi-
ple measures of the latent classes are repeated over time and where across-time
transitions between classes are of particular interest. Here, latent categorical vari-
ables are used to capture fundamental latent variable constructs in a system of
regression relations akin to SEM.
The latent transition model is an example of the use of multiple latent class

variables c and is therefore not directly incorporated in the framework speci ed
above. Muthén (2001b) showed how multiple latent class variables can be ana-
lyzed using a con rmatory latent class analysis with a single latent class variable
including all the possible latent class combinations, applying equality restrictions
among the measurement parameters. Nevertheless, this does not handle multiple
time points with parameter restrictions such as rst-order Markov modeling for
the latent class variables. Latent transition analysis incorporated in the general
is a topic for future research.
An overview of latent transition modeling issues is given in Collins and Wugal-

ter (1992) and Reboussin, Reboussin, Liang and Anthony (1998). For examples,
see, e.g., Collins, Graham, Rousculp and Hansen (1997), Graham, Collins, Wu-
galter, Chung and Hansen (1991), and Kandel, Yamaguchi and Chen (1992).

3.5 Logistic regression mixture analysis

Logistic regression analysis with latent classes is interesting to consider as a
special case of latent class analysis with covariates. The model was proposed by
Follman and Lambert (1989) and considers a single binary u. It may be expressed
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for class k as

logit = +k + �u x, (37)

which is a special case of (28) where the logit intercept, i.e. the negative of the
threshold + , varies across class but the slopes do not.
In (23), �ck = 0 so that the covariates are assumed to not in uence the class

membership. Follman and Lambert (1989) considered an application where two
types of blood parasites were killed with various doses of poison. In this appli-
cation, the assumption of �ck = 0 is natural because class membership existed
before the poison was administered and was not in uenced by it. Follman and
Lambert (1989) discuss the identi cation status of the model.
Even in this simple form, however, logistic regression mixture analysis is dif-

cult to apply in practice, probably because of the limited information available
with only a single binary u in addition to the covariates x. This is most likely why
the analysis has not caught on in practice. In contrast, latent class analysis with
covariates using multiple u variables is typically a well-behaved analysis method.

4. Modeling Framework C

Consider next the special case C of the general modeling framework shown in
Figure 1. Framework C is characterized by adding categorical latent variables,
denoted by the circle c in Figure 1, to framework A. Particular models include a
variety of mainstream statistical and psychometric topics. To be discussed here
are nite mixture modeling, latent pro le analysis, growth mixture modeling, and
mixture SEM.
It is interesting to compare framework C with framework B. Framework B can

be seen as containing models that use latent classes to explain relationships among
observed variables. A more fundamental idea can, however, be extracted from
latent class approaches. Di erent classes can have di erent parameter values and,
unlike the latent class model, even di erent model types. In other words, the idea
of unobserved heterogeneity can be taken a step further using categorical latent
variables. This further step is taken in framework C, and also in the subsequent
general framework D.5)

In framework C, the SEM parameterization is generalized to multiple latent
classes, adding a subscript k. This is analogous to the multiple-group situation,
except that group is unobserved. In what follows, this generalization of (1) and
(2) will be understood. Here, multivariate normality of y conditional on x and
class is assumed. This implies that the resulting mixture distribution, not condi-
tioning on class, is allowed to be strongly non-normal. In the Mplus framework
of Muthén and Muthén (1998-2001; Appendix 8), the mixture modeling allows

5)Mplus examples of framework C models are given at
www.statmodel.com/mplus/examples/mixture.html.



102 Bengt O. Muthén

every parameter of framework A to vary across the latent classes.

4.1 Finite mixture modeling of multivariate normals

A straightforward case of framework C is nite mixture modeling of multi-
variate distributions. Here, the continuous latent variables of � in Figure 1 are
not used. It is assumed that for class k, y is distributed as N(μk, k). This
is a special case of the latent class generalization of (1) where there are no fac-
tors, μk = "k, k = k. There are two di erent reasons why such a mixture
model would be of interest, (i) to t a non-normal distribution and (ii) to study
substantively meaningful mixture components (latent classes).
The exibility of the normal mixture model to t highly skewed data was

recognized already by Pearson (1895); for a review, see McLachlan and Peel (2000,
pp. 14-17, 177-179). For example, a lognormal univariate distribution is very well
t by a 2-class mixture with equal variances. Figure 5 shows a 2-class example.
At the top is shown the mixture distribution, that is the skewed distribution that
would be seen in data. At the bottom are shown two normal mixture component
distributions that when mixed together by the class probabilities $ and (1 $)
perfectly describe the distribution at the top. If the interest is in tting a model
to data from the distribution at the top, the 2-class mixture model can be used
to produce mixed maximum-likelihood estimates,

μ̂m = $̂ μ̂1 + (1 $̂) μ̂2, (38)

�̂m = $̂ (μ̂2
1 + �̂1) + (1 $̂) (μ̂2

2 + �̂2) μ̂2
m, (39)

using the subscript m to denote the mixed estimates for the distribution at the
top. The delta method can be used to compute standard errors. The idea of using
mixed estimates has for example been discussed in missing data modeling using
the pattern-mixture approach, see, e.g. Little and Wang (1996), Hogan and Laird
(1997), and Hedeker and Rose (2000).
In many cases, however, the mixture components have a fundamental sub-

stantive meaning, where there are theoretical reasons for individuals to behave
di erently and have di erent antecedents and consequences. Here, mixed esti-
mates such as (38), (39) are not of interest, but the focus is on the parameters
of the di erent mixture component distributions. There may for example be bio-
logical/genetic reasons for the existence of di erent mixture components, such as
with the two kinds of trypanosomes in Section 3.5.
Mixture modeling in applications where there are substantive reasons to in-

vestigate di erent latent classes relates to cluster analysis. Cluster analysis using
nite mixture modeling has been proposed as a strong alternative to conventional
clustering techniques, see, e.g., McLachlan and Peel (2000). A classic example
is the Fisher’s iris data analyzed in Everitt and Hand (1981). Four measures
corresponding to sepal and petal lengths and widths were used to classify 150
iris owers. Here, there were three known species of iris present and the interest
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Figure 5: A mixture of two components

was in how well the classi cation could be recovered. This particular example
also illustrates the possible di culty in tting mixture models with class-varying
variances, with multiple maxima and possible non-convergence or convergence to
singular covariance matrices depending on starting values.
An excellent overview of nite mixture modeling is given in McLachlan and

Peel (2000). This source also gives a multitude of examples. The iris data example
is available at the Mplus web site given above.

4.2 Latent pro le analysis

In contrast to the analysis of the iris example above, latent pro le analysis
applies a structure to the covariance matrices, assuming uncorrelated outcomes
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conditional on class,

k = k =

�11k 0 0 0
0 �22k 0 0
...

...
. . .

...
0 0 0 �ppk

. (40)

With class-varying means μk, latent pro le analysis is therefore analogous to la-
tent class analysis. In actual analyses, models with class-invariant variances in
(40) are better behaved in terms of convergence. It is interesting to note that the
latent class analysis does not face this choice given that means and variances of the
categorical variables of u are not represented by separate parameters. Relation-
ships among latent class, latent pro le, and factor analysis models are described
in Bartholomew (1987), Gibson (1959), and Lazarsfeld and Henry (1968).

4.3 Growth mixture modeling

The growth modeling of Section 2.1 uses continuous latent variables in the
form of random e ects. The continuous latent variables capture unobserved het-
erogeneity in terms of individual di erences in growth over time. In many appli-
cations, however, there are more fundamental forms of unobserved heterogeneity
that cannot be well captured by continuous latent variables but require categor-
ical latent variables. The classes of the categorical latent variable can represent
latent trajectory classes. Substantive theories motivating latent trajectory classes
are common in many di erent elds, such as with normative and non-normative
development in behavioral research and disease processes in medicine.
As for latent pro le analysis, growth mixture modeling imposes a structure

on the covariance matrix for each class. Unlike latent pro le analysis, however,
growth mixture modeling does not assume uncorrelated outcomes given class.
Instead, further heterogeneity within class is represented by random e ects that
in uence the outcomes at all time points, causing them to be correlated.
Assume for example the following quadratic growth model for individual i in

class k (k = 1, 2, . . . ,K).

yit = �0i + �1i akt + �2i a
2
kt + ²it, (41)

where yit (i = 1, 2, . . . , n; t = 1, 2, . . . , T ) are outcomes in uenced by the random
e ects �0i, �1i, and �2i. In line with Section 2.1, the time scores of a enter into the

k matrix. The residuals ²it have a T ×T covariance matrix k, possibly varying
across the trajectory classes (k = 1, 2, . . . ,K). The random e ects are related to
the covariates x,

�0i = 
0k + �
0
0k xi + 
0i, (42)

�1i = 
1k + �
0
1k xi + 
1i, (43)

�2i = 
2k + �
0
2k xi + 
2i. (44)
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The residuals 
i have a 3×3 covariance matrix k, possibly varying across classes
k (k = 1, 2, . . . ,K). It is clear that this model ts into framework C in line with
how the growth model t into framework A.
The growth mixture model o ers great exibility in across-class parameter

di erences. The di erent shapes of the latent trajectory classes are typically
characterized by the class-varying 
k parameters holding k class-invariant. Cer-
tain classes may require class-speci c variances k and k. In addition, di erent
classes may have di erent relations to x corresponding to class-varying �k coe -
cients.
A special case of the growth mixture model is obtained as a continuous-outcome

version of the latent class growth analysis presented in Section 3.3. This type of
modeling, proposed by Nagin and introduced into PROC TRAJ in SAS speci es

k = 0, k = � I. In contrast, growth mixture modeling allows for individual
variation within each class through k. The latent class growth analysis typically
requires many more classes to t the same data and often several of the classes
represent only minor variations in trajectories and not fundamentally di erent
growth forms.
Muthén et al. (in press) present a growth mixture model suitable for random-

ized trials. In conventional growth modeling the treatment e ects can be modeled
as a ecting the trajectories after the treatment has started. The Muthén et al.
generalization addresses the common situation that treatment e ects are often
di erent for di erent kinds of individuals. It allows treatment e ects to vary
across latent trajectory classes for the repeated measures.
For a technical description of growth mixture modeling, see Muthén and Shed-

den (1999) and Muthén and Muthén (1998-2001; Appendix 8). For examples, see,
e.g. Muthén and Shedden (1999), Muthén and Muthén (2000), Muthén (2001a,
b), Muthén, Brown, Masyn, Jo, Khoo, Yang, Wang, Kellam, Carlin and Liao (in
press), and Li, Duncan, Duncan and Acock (2001).

4.3.1 A growth mixture modeling example of reading failure

An example clari es the analysis opportunities presented by growth mixture
modeling. Section 2.1.1 introduced a reading data example with phonemic aware-
ness development in Kindergarten related to end of grade 2 spelling performance.
Figure 2 suggests heterogeneity in the phonemic awareness development, with a
group of children having a close to zero growth rate in Kindergarten. Reading
research points to a subgroup of children who experience reading failure by third
grade. It is therefore of interest to see if early signs of a failing group can be
found earlier, and perhaps as early as end of Kindergarten. Two analyses are
presented here as illustration (see also Muthén, Khoo, Francis, & Boscardin, in
press). First, a growth mixture analysis with 1 to 5 classes was made of the four
phonemic awareness outcomes. Second, this growth mixture model was extended
to include in the same analysis the spelling test outcome from the end of sec-
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ond grade, letting the mean and variance of this outcome vary as a function of
the latent trajectory classes. Both models clearly t in framework C. Maximum-
likelihood estimation by Mplus was used.
A conventional linear, single-class random e ects growth model ts well in this

case (�2(5) = 7.49, n = 582) and shows signi cant variation in the intercept and
slope growth factors. Such a good mean and covariance structure t can, however,
be obtained even when the true model is a growth mixture model with more than
one class (see, e.g. Muthén, 1989). Fitting linear models with 2, 3, 4, and 5 latent
classes pointed to a steady improvement of the Bayesian information criterion
that rewards a high log likelihood and a low number of parameters. Given the
particular interest in a low, failing class, a choice does not have to be made between
the 3-, 4-, and 5-class solutions since they all resulted in the same formation of a
lowest class of 56% of the children. Figure 6 shows the estimated growth (solid
line) and the corresponding observed trajectories, where the latter are obtained
by using ”pseudo-classes”, i.e. the selection of individuals are obtained by random
draws from their estimated posterior probabilities as suggested in Bandeen-Roche
et al. (1977) and Muthén et al. (in press).
Adding the second-grade spelling test to the growth mixture model shows the

predictive power of the Kindergarten information from two years earlier. The
extended growth mixture model analysis showed that the means of the spelling
test were signi cantly di erent across the 3 classes. Box plots of the spelling test
scores based on pseudo-class assignments into the 3 classes are given in Figure 7.

4.4 Mixture SEM

Mixture SEM will be mentioned only brie y in this article. It follows from
the discussion in Section 2 that mixture SEM and growth mixture modeling t
into the same modeling framework. Mixture SEM includes mixture linear regres-
sion, mixture path analysis, factor mixture analysis, and general mixture SEM.
Consider as an example factor mixture analysis, where for class k

E(yk) = "k + k 
k, (45)

V (yk) = k k
0
k + k. (46)

Analogous to multiple-group analysis, a major interest is in across-class variation
in the factor means, variances, and covariances of 
k, k. The model is similar
to growth mixture analysis in that continuous latent variables, i.e. the factors,
are used to describe correlations among the outcomes conditional on class as in
(46). Lubke, Muthén and Larsen (2001) studied the identi ability of the factor
mixture model. The special case of measurement invariance for all the outcomes,
i.e. no class variation in ", , is of particular interest because it places the
factors in the same metric so that 
k, k comparisons are meaningful. However,
Lubke, Muthén and Larsen (2001) point to analysis di culties with near-singular
information matrix estimates when tting such full invariance models. These
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di culties are not shared by the growth mixture model, which typically imposes
equality of " parameters across time and across class and has few if any free
parameters in .
For overviews and examples of factor mixture analysis and mixture SEM, see,

e.g., Arminger and Stein (1997), Arminger, Stein and Wittenberg (1998), Bla eld
(1980), Dolan and van der Maas (1998), Hoshino (2001), Jedidi, Jagpal and De-
Sarbo(1997), Jedidi, Ramaswamy, DeSarbo and Wedel (1996), McLachlan and
Peel (2000), and Yung (1997).

Figure 6: 3-class growth mixture model for phonemic awareness
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Figure 7: Box plots for second-grade spelling scores
in three phonemic awareness classes

5. Framework D

Consider next the most general case D of the modeling framework shown in
Figure 1. Framework D is characterized by adding categorical latent variable in-
dicators u to framework C. Framework D clearly shows the modeling generality
achieved by a combination of continuous and categorical latent variables. This
uni ed framework is an example of the whole being more than the sum of its
parts. It is powerful not only because it contains many special cases, but also
because it suggests many new modeling combinations. Particular models include
a wide variety of statistical and psychometric topics. To be discussed here are
complier-average causal e ect modeling, combined latent class and growth mix-
ture modeling, prediction of distal outcomes from growth shapes, discrete-time
survival mixture analysis, non-ignorable missing data modeling, and modeling of
semicontinuous outcomes.6)

5.1 Complier-average causal e ect modeling

Complier-average causal e ect (CACE) modeling is used in randomized tri-
als where a portion of the individuals randomized to the treatment group choose

6)Mplus examples of framework D models are given at
www.statmodel.com/mplus/examples/mixture.html as well as at
www.statmodel.com/mplus/examples/penn.html
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to not participate (“noncompliers”). Although developed for this specialized ap-
plication, CACE modeling involves interesting general latent variable modeling
issues. In particular, CACE modeling illustrates how latent variables are used in
mainstream statistics to capture missing data on categorical variables. Here, the
mixture modeling focuses on estimating parameters for substantively meaningful
mixture components, where these mixture components are inferred not only from
the outcomes but also from auxiliary information. CACE modeling represents a
transition from framework C to framework D, where in addition to the frame-
work C observed data information, a minimal amount of information on class
membership is added in the form of a single u variable observed for part of the
sample.
In a randomized trial, it is common to have noncompliers among those invited

to treatment, that is, some individuals do not show up for treatment or do not take
the medication. Because of randomization, a equal-sized group of noncompliers
is also present among control group individuals, although the non-compliance
status does not manifest itself. The noncomplier and complier groups are typically
not similar, but may di er with respect to several characteristics such as age,
education, motivation, etc. The assessment of treatment e ects with respect to
say the mean of an outcome is therefore complicated. Four main approaches are
common. First, “intent-to-treat” analysis makes a straightforward comparison of
the treatment group to the control group. This may lead to a diluted treatment
e ect given that not everyone in this group has received treatment. Second, one
may compare compliers in the treatment group with the controls. Third, compliers
in the treatment group may be compared to the combined group of noncompliers
in the treatment group and everyone in the control group. Fourth, compliers in
the treatment group may be compared to compliers in the control group. Only the
last approach compares the same subset of people in the treatment and control
groups, but presents the problem that this subset is not observed in the control
group. This problem is solved by CACE mixture modeling.
CACE modeling can be expressed by the framework D combination of (1), (2)

generalized to include the latent class addition of (23) - (29). The probability of
membership in the two latent classes as a function of covariates may be expressed
by the logistic regression (23), while the outcome y is expressed by the mixed
linear regression,

yik = 
k + �k Iik + 
ik, (47)

where I denotes the 0/1 treatment/control dummy variable. Here, 
k captures
the di erent y means for individuals in the absence of treatment. CACE modeling
typically takes �k = 0 for the noncomplier class.
In statistical analysis this situation is viewed as a missing data problem. Data

are missing on the binary compliance variable for individuals in the control group,
while data on this variable are present for the treatment group. The frame-
work D conceptualization is that non-compliance status is a latent class variable,
where this latent class variable becomes observed for treatment group individu-
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als. Hence, the latent class variable captures missing data on a categorical vari-
able. Although the choice between the two conceptualizations may seem as only
a matter of semantics, as described below the latent variable approach suggests
extensions of CACE modeling using connections with psychometric modeling that
have potential value in randomized trials.
The fact that latent class status is known for treatment group individuals can

be handled in two equivalent ways in the Mplus analysis. First, training data may
be used to indicate that membership in the non-compliance class is impossible
for complying individuals in the treatment group and that membership in the
compliance class is impossible for non-complying individuals in the treatment
group. Second, a binary latent class indicator u de ned to be identical to the
latent class variable may be introduced in line with the latent class analysis of
framework B. With 0 representing noncompliance and 1 representing compliance,
the u variable has xed parameter values, P (u = 1|compliance class) = 1, P (u =
1|non-compliance class) = 0. The variable u is observed for treatment group
individuals and missing for control group individuals. This second approach shows
that CACE modeling belongs in framework D and also suggests a generalization.
In psychometrics, the typical approach is to seek observed indicators for latent
variables. An attempt could be made to measure the variable u also among
controls, for example by asking individuals before randomization how likely they
are to participate in the treatment if chosen. Several di erent measures u could
be designed and used as latent class analysis indicators in line with framework B
modeling.
For background on CACE modeling, see, e.g., Angrist, Imbens and Rubin

(1996) and Frangakis and Baker (2001). For examples, see, e.g., Little and Yau
(1998), Jo (2001a, b, c), and Jo and Muthén (2001).7)

5.2 Combined latent class and growth mixture analysis

Figure 1 shows clearly that framework D can combine the framework B latent
class analysis with the framework C growth mixture modeling. As an example,
Muthén and Muthén (2000) analyzed the NLSY data discussed in Section 3,
where it was of interest to relate latent classes of individuals with respect to
antisocial behavior at age 17 to latent trajectory classes for heavy drinking ages
18-30. Here, a latent class variable was used for each of the two sets of variables,
the latent class measurement instrument for antisocial behavior and the repeated
measures of heavy drinking. Using the con rmatory latent class analysis technique
described in Muthén (2001b), these two latent class variables can be analyzed
together. This gives estimates of the relationships between the two classi cations.
To the extent that the two classi cations are highly correlated, a latent class

7)Data and Mplus input for the Little and Yao (1998) example is available on the Mplus
web site.
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analysis measurement instrument can improve the classi cation into the latent
trajectory classes. This approach is of potential importance, e.g. using the latent
class measurement instrument as a screening device in a treatment study, where
di erent treatments are matched to di erent kinds of trajectory classes.

5.3 Prediction from growth shapes

Muthén and Shedden (1999) used the latent trajectory classes in a growth
mixture model of heavy drinking as predictors of distal outcomes in the form
of binary u variables, such as indicators of alcohol dependence. Predicting from
the heavy drinking growth factors faces the potential problem of a highly non-
linear relationship given that a growth factor aquires its meaning in conjunction
with other growth factors. For example, in a study of problematic behavior such
as heavy drinking, a low slope growth factor value has a di erent meaning if
the intercept factor value is high (“chronic” development) than when it is low
(“normal” development). Given that the latent trajectory classes can represent
di erent shapes of development, prediction from the latent classes is a powerful
approach.

5.4 Special uses of u indicators

The framework D addition of u to framework C not only adds latent class
analysis type features but also provides several unexpected additional modeling
possibilities. Muthén and Masyn (2001) show how u can be used as event history
indicators in discrete-time survival analysis. This model corresponds to a single-
class latent class analysis, but Muthén and Masyn (2001) also explore di erent
types of mixture survival models. Muthén and Brown (2001) show how u can be
used as missing data indicators for missingness on y. This leads to an approach
to study non-ignorable missing data in mixture modeling, for example where
missingness is related to latent trajectory classes. Muthén (2001) shows how u
can be used to indicate zero or ” oor” values for y, that is values that represent
absence of an activity. Such data are frequently seen in behavioral research given
that time of onset varies across individuals. It is the strength of framework D that
these seemingly disparate models can be integrated and used in new combinations
to provide answers to more probing research questions.

6. Conclusions

This article has provided an overview of statistical analysis with latent vari-
ables. In psychometrics it is typical to use latent variables to represent theoretical
constructs. The constructs themselves are of key interest and a focus is on mea-
suring di erent aspects of the constructs. In statistics, latent variables are more
typically used to represent unobserved heterogeneity, sources of variation, and
missing data. The latent variables are often not of key interest but are included
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to more correctly model the data. Unobserved heterogeneity is typically repre-
sented by random e ects, i.e. continuous latent variables, a common example
being growth modeling in the form of the mixed linear modeling (multilevel mod-
eling) to capture individual di erences in growth. Continuous latent variables are
also used to represent sources of variation in hierarchical cross-sectional data, to
let the model properly re ect a cluster sampling scheme and to estimate variance
components. Cluster analysis considers unobserved heterogeneity in the form
of categorical latent variables, i.e. latent classes, in order to nd homogeneous
groups of individuals. Finite mixture modeling with categorical latent variables is
a rigorous approach to such cluster analysis. Missing data corresponds to latent
variables that are either continuous or categorical.
The article discussed a general latent variable modeling framework that uses

a combination of continuous and categorical latent variables to give a unifying
view of psychometric and statistical latent variable applications. This framework
shows connections between di erent modeling traditions and suggests interesting
extensions. It is the hope that this general latent variable modeling framework
stimulates a better integration of psychometric and statistical development. Also,
it is hoped that this framework provides substantive researchers with an analysis
tool that is both powerful and easy to understand in order to more readily respond
to the complexity of their research questions. Ongoing research by the author aims
at further extensions of the modeling framework.
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